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1. Statement of the Theorem

We aim to prove Theorem 1 from Whitney’s paper [W] while updating the terminology
and attempting to explain each step in greater detail. This theorem is stated as follows

Theorem 1.1. Any Cr-m-manifold (r ≥ 1 finite or infinite) is Cr-diffeomorphic with an
analytic manifold in Euclidean space R2m+1.

This is done in two parts. First, we show that any Cr-m-manifold (r ≥ 1 finite or infinite)
is Cr-diffeomorphic with a manifold in Euclidean space R2m+1. The details of this can be
found in [W], as we will mainly be focusing on the second half. Then, we will add the
analyticity condition to complete the theorem.

Before we begin, we need to define some terminology.

2. Definitions

We begin with a short overview of topological manifolds. The definitions that follow are
adapted from [L], which is a great place to start if you need a more comprehensive discussion
of manifolds.

Definition 2.1. A topological space M is an n-manifold if

(1) M is a Hausdorff space
(2) M is second countable: There is a countable basis for the topology of M
(3) M is locally Euclidean with dimension n: Every point ofM has an open neighborhood

that is homeomorphic to an open subset of Rn. The pair (U, φ) where U is the
aforementioned open neighborhood and φ is the homeomorphism is known as a chart.
The collection of all these charts covering M is called an atlas.

This allows us to think of a manifold as a patchwork collection of copies of Rn, in each of
which we can apply many of the mathematical theorems for Euclidean space. In general, we
examine functions and their properties by looking at their image under charts.

Definition 2.2. Two charts (U, φ) and (V, σ) are Cr-compatible if either U ∩ V = ∅ or the
appropriate restriction of σ ◦ φ−1 is a Cr-diffeomorphism.

Definition 2.3. Let M be an n-manifold
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• An atlas A on M is maximal if any chart that is Cr-compatible with a chart in A is
already in A. We call such a maximal atlas a Cr-structure on M .
• M is a Cr-n-manifold if there exists a Cr-structure on M .

This allows us to look at functions defined over multiple charts without its definition
"breaking" in the overlap of charts.

Definition 2.4. Let M,N be Cr-n-manifolds. f : M → N is a Cr-map if for every p ∈ M
there exist smooth charts (U, φ) containing p and (V, σ) containing f(p) such that f(U) ⊆ V
and the map σ ◦ f ◦ φ−1 : φ(U)→ σ(V ) is Cr.

Definition 2.5. Let M,N be Cr-n-manifolds. f : M → N is a Cr-diffeomorphism if it
is a Cr-map and has a Cr-inverse. If such a map exists, we say that M and N are Cr-
diffeomorphic.

Definition 2.6. LetM be a Cr-m-manifold and N be a Cr-n-manifold. A Cr-map f :M →
N is a Cr-immersion if its differential is injective at each point of M .

Definition 2.7. Let M be a Cr-m-manifold and N be a Cr-n-manifold. A Cr-embedding
of M into N is a Cr-immersion f :M → N that is also a homeomorphism onto its image in
the subspace topology.

3. The Embedding Theorem and Assumed Lemmas

The following two lemmas are extensions of the results in another of Whitney’s papers,
[AE].

Lemma 3.1. Let f be a Cr-map (r ≥ 0) of the open set R ⊆ Rm into Rn, and η : R → R
be positive and continuous. Then there is an analytic map F (p) on R which approximates f
in R within η through the rth order.

Lemma 3.2. Let A be a closed subset of the Cr-manifold M . Let η :M\A→ R be positive
and continuous on M\A, let η(p) → 0 as p approaches any point of A, and let f : M → N
be a Cr-map into the Cr-manifold N . If F approximates f in M\A within η to the rth order
and F = f in A, then F is of class Cr on M .

The following lemma defines a neighborhood of a manifold embedded in Euclidean space.
It will be used extensively when proving the theorem.

Lemma 3.3. Let M be a Cr-m-manifold embedded in Rn(r ≥ 1 finite or infinite). Then
there is a positive continuous function ξ : M → R and a function P of class Cr on M such
that:

(1) P (p) is an (n−m)-plane through p complementary to the tangent plane to M at p.
(2) If R(p) is that part of P (p) within ξ(p) of p, then the R(p) fill out a neighborhood

R(M) of M in a (1 − 1) way. That is, if a point q ∈ R(M) satisfies q ∈ R(p1) and
q ∈ R(p2), then p1 = p2.

(3) If H(q) = p for q ∈ R(p), then H is of class Cr on R(M). Moreover, ifM is analytic,
so are P and H.
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4. The Analyticity Condition

In this section, we will prove the following lemma.

Lemma 4.1. Let M be a Cr-m-manifold embedded in Rn (r ≥ 1 finite or infinite). Then
there is a Cr-diffeomorphic analytic manifold M∗ in Rn.

Once proved, we apply this lemma to the embedding of M in R2m+1 to prove Theorem
1.1.

For this we will need the following lemma.

Lemma 4.2. Given an open set R in Rn, a positive continuous function η : R → R, and
r ≥ 0, there is an analytic function ω : R→ R such that

ω(q) > 0

|Dkω(q)| < η(q)

for q ∈ R where Dk is the total kth derivative (where k ≤ r)

Proof. Let {Ci} be a locally finite open cover of R, and let φi : R→ R be a C∞ partition of
unity subordinate to the {Ci}. Choosing ai ∈ R+ such that ai < ci where ci is the minimum
value of η on Ci, we have that φ : R → R given by φ(q) =

∑
Ci
aiφi(q) is a positive C∞

function where φ(q) =
∑
aiφi(q) <

∑
ciφi(q) ≤ η(q). If ω : R → R is an analytic function

approximating φ on R through the rth order within a small positive function γ : R → R
chosen such that γ(q) > 0 for all q ∈ R and |Dkω(q)| < η(q) for k ≤ r, the existence of
which is given by Lemma 3.1, then ω satisfies the Lemma.

�

4.1. The Function φ∗. Let M be a Cr-m-manifold embedded in Rn. Now define P , R,
ξ and H as in Lemma 3.3. We will extend the domains of P , R, and ξ from M to R(M)
by setting P (q) = P (H(q)) and ξ(q) = ξ(H(q)) for each q ∈ R(M), noting that these
functions remain continuous since H is Cr in R(M). These extensions naturally give rise to
an extension of R given by R(q) = R(H(q)).

We now define φ : R(M)→ R by

φ(q) = ||q −H(q)|| (1)

which is the distance between a point in q ∈ R(M) from the intersection of M and P (q).
Since H is Cr in R(M), we get that φ is Cr in R(M)\M (Where φ is not necessarily Cr in
M because the norm is not differentiable at 0. We do, however, have that φ is continuous
on R(M)).

Let η(q) = min(1
3
, 1
3
φ(q)) for q ∈ R(M). By Lemma 3.1, there exists a function φ′

continuous in R(M) and analytic in R(M)\M such that φ′ approximates φ in R(M)\M
3



within η through the first order. Then, by Lemma 3.2, we know that φ′ is C1 in R(M) and
φ′ = φ in M . By our definition of η, we know that

|φ′(q)− φ(q)| < 1

3
ξ(q)

||∇φ′(q)−∇φ(q)|| < 1

3
(2)

in R(M)\M , and that φ′ = φ = 0 inM . Similarly, by Lemma 4.2, there is a positive analytic
function ω : R(M)→ R such that

|ω(q)| < η(q)

||∇ω(q)|| < η(q)

(3)

and hence

|ω(q)| < 1

3
ξ(q)

||∇ω(q)|| < 1

3
(4)

for q ∈ R(M). We will now define a third function φ∗ : R(M)→ R by

φ∗(q) = φ′(q)− ω(q) (5)

which is continuous on R(M) and analytic on R(M)\M . Furthermore, since φ′(p) = 0
and ω(p) > 0 for p ∈ M , we know that φ∗(p) < 0 for p ∈ M . We now look to show that
φ∗ vanishes on some subset of P (p) for each p ∈ M (which we will show is a level set for
φ∗(q) = 0 that is diffeomorphic to an (n−m− 1)-sphere), and then show this set of points
is characterized by a function that varies analytically with q ∈ R(M) and Q(q) close to
P (q) and containing q. This function will be used to create an analytic neighborhood, the
boundary of which is an (n − 1)-manifold S, of M that we will use to define our analytic
manifoldM∗. We also necessitate that this neighborhood’s center of mass lies on its interior,
the reason for which will be made more clear later on.

4.2. The Neighborhood S. We begin by defining an analytic orthogonal transformation
that sends an (n−m)-plane P to another such plane P ′ and sends a specific point p in P to a
specific point p′ in P ′. Since our planes will be relatively close, and hence the transformation
will be close to the identity matrix, we will assume that our transformation has an empty
kernel.
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4.2.1. Transformation Tp,P . Let P0 be the plane parallel to P that passes through the origin,
and let P ′0 be the plane parallel to P ′ that passes through the origin. Let v1, . . . , vk be
mutually orthogonal vectors that span P0, and vk+1, . . . , vn be vectors orthogonal to each
other as well as to v1, . . . , vk that span En. To each vi, we define its image Tvi explicitly
and inductively. For 1 ≤ i ≤ k, let v′i = proj(vi, P

′
0) be the projections of vi onto the

plane P ′0. Let P ′i be the plane in P ′0 formed by the span of v′1, . . . , v′i. We can now apply
the Gram-Schmidt process to the vectors v′1, . . . , v′i to create orthogonal vectors Tv1, . . . , T vi
which preserve the orientation of v1, . . . , vi. For j > k, let P ′j be the plane spanned by P ′0 and
vk+1, . . . , vj. We then apply Gram-Schmidt again to create vectors Tv1, . . . , T vj that span
this space and are orthogonal to each other while preserving the orientation of v1, . . . , vj.
We then define Tp,P to be the composition of the translation sending p to 0, T as defined
above, and the translation sending 0 to p′, which is the unique transformation that sends p
to p′ and vi to Tvi for i = 1, . . . , n.

4.2.2. The Analytic Function σ. In order to prove that S exists and show how it varies
analytically with q and Q(q), we will need to extend the definitions of some of our functions,
and define a few new functions. Given a subset K ofM , let R(K) be the set of all q ∈ R(M)
such that H(q) ∈ K. Fix p0 ∈M . Let Tp0 be the plane tangent to M at p0 contained in Rn.
Since M is analytic, if we choose a small enough neighborhood U of p0, then we have that
P (p) is complementary to Tp0 for all p ∈ U . We can then further reduce our neighborhood
to a U ′ ⊂ U with an associated δ > 0 such that if Q(q) is any plane through some q ∈ R(U ′)
where ||Q(q) − P (q)|| < δ, then Q(q) is complementary to T and hence it intersects T in
a unique point H∗(Q(q)). Since H∗ is simply the projection of points in a plane to a fixed
point on a line, it is analytic. We now use H∗ to define three new functions.

H ′(q) = H∗(P (q))

u(q) =
q −H(q)

||q −H(q)||

u′(q) =
q −H ′(q)
||q −H ′(q)||

(6)

Here, u(q) is a unit vector from q in the direction of it’s projection onto M and u′(q) is a
unit vector from q in the direction of it’s projection onto T . If U ′ and δ are sufficiently small,
then for all q ∈ R(U ′) and any Q(q) passing through q such that ||Q(q)−P (q)|| < δ, we have
that φ∗(H∗(Q(q))) < 0, ||H ′(q)−H(q)|| < ξ(q)

6
, and if φ∗(q) ≥ 0 then ||u′(q)− u(q)|| < 1

3
.

Consider the function TH∗(Q(q)),Q(q) as defined in subsection 4.2.1 for any Q(q) satisfying
the above conditions (We will call the space of all such Q(q) Y ) and the fixed point p0
and plane P (p0). As a reminder, this function analytically maps P (p0) onto Q(q) where
TH∗(Q(q)),Q(q)(p0) = H∗(Q(q)). Let S(Q(q)) be the unit (n − m − 1)-sphere in Q(q) about
H∗(Q(q)). For any q0 ∈ S(P (p0)), let correspond µ(Q(q), q0) = TH∗(Q(q)),Q(q)(q0) in S(Q(q)).
Since TH∗(Q(q)),Q(q) is analytic on the plane P (p0) and the Gram-Schmidt process is analytic,
µ : Y × S(P (p0))→ R(U ′) is analytic.
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For each q0 ∈ S(P (p0)), α > 0, and Q(q), let

w = H∗(Q(q)) + α(µ(Q(q), q)−H∗(Q(q))) (7)

be a point on the image of S(P (p0)) dilated by α. We now define σ : Y × S(P (p0))×R+ →
R(M) by

σ(Q(q), q0, α) = φ∗(w) (8)

which is analytic on R(M)\M since φ∗, µ, and H∗ are analytic there.

4.2.3. The zero set of σ. It remains to be seen that the zero set of σ bounds an analytic
(n − 1)-neighborhood of M . That is, for some γ where 0 < γ < δ, letting Q be any plane
through some q ∈ R(U ′) where ||Q − P (q)|| < γ, and for each q0 ∈ S(P (p0)), there is a
unique

α = ρ(Q, q0) > 0 (9)

determined by an analytic function ρ : Y × S(P (p0))→ R+ which causes σ to vanish. First,
by the Analytic Implicit Function Theorem, we know that ρ exists and is analytic as σ is
analytic, provided that we can show ∂σ

∂α

∣∣∣
(Q,q0,β)

6= 0 whenever σ(Q, q0, β) = 0. Furthermore,

φ∗ is both analytic and bounded, so it’s zero set bounds an analytic neighborhood of M
provided that σ(Q, q0, ρ(Q, q0)) traces a a shape diffeomorphic to a sphere containing H∗(Q).
Since TH∗(Q),Q is an orthogonal linear transformation, we know that µ sends the unit sphere
S(P (p0)) to a unit sphere in Q about H∗(Q). Also, for every point on a line segment from
H∗(Q) to any point of S(Q), we can find an α such that the point lies on a sphere of radius
α about H∗(Q) and therefore can be expressed in the form of w for some q0 ∈ S(P (p0)).
So, it is sufficient to examine points on an arbitrary line segment from H∗(Q) to a point of
S(Q) for an arbitrary choice of Q when characterizing σ. Therefore, it is sufficient for us
to find a point q in the line segment from H∗(Q) to a point q′ of S(Q) such that φ∗(q) = 0
and | ∂σ

∂α
| > 0 for all points w in the line from H∗(Q) to q′ such that φ∗(w) ≥ 0 (where this

condition on the derivative ensures there are no critical points in the non-negative region,
therefore guaranteeing that the uniqueness of the zero on the line as φ∗ must eventually
increase to zero as it moves away from M , it must transition to being positive after that
since the derivative is non-zero there, and it cannot decrease back to zero once it does since
that would require a critical point in the positive region).

We will prove our result on planes of the form P as in Lemma 3.3 (noting that all P (p)
are degenerative members of Y ). There is then some open neighborhood around q in which
| ∂σ
∂α
| > 0 and hence our result holds for any arbitrary plane that is sufficiently close to P ,

provided it is also within δ (We let γ be this distance). Since we will be examining a line in
some P , we have that

σ′(p, q0, α) = σ(P (p), q0, α)

for p ∈ U ′ is equivalent to σ on our region. Hence, they will be used interchangeably until
we prove the existence and uniqueness of such a q.

To summarize, we aim to prove the following lemma.

Lemma 4.3. Fix p ∈ U ′ and q0 ∈ S(P0). Then,
6



• There is a point q on the line segment between H∗(P (p)) and µ(P (p), q0) such that
φ∗(q) = 0.
• |∂σ′

∂α
| > 0 for all points w in the line between H∗(P (p)) and µ(P (p), q0) such that

φ∗(w) ≥ 0.

Proof. Fix p ∈ U ′ and q0 ∈ S(P0). By our definition of H ′, we know that H∗(P (q)) = H ′(q)

and hence ||H∗(P (q))−H(q)|| < ξ(q)
6

for q ∈ R(U ′). So, if w is the point on the line segment
from H∗(P (p)) to µ(P (p), q0) such that the corresponding α = 5ξ(p)

6
, then the line segment

from H∗(P (p)) to w lies entirely in R(U ′). Furthermore, the following shows that φ∗(w) > 0
(noting that ξ(w) = ξ(p) since H(w) = p)

φ∗(w) = φ′(w)− ω(w)

> φ(w)− 1

3
ξ(w)− ω(w)

> φ(w)− 1

3
ξ(w)− 1

3
ξ(w)

= φ(w)− 2

3
ξ(w)

= ||w −H(w)|| − 2

3
ξ(w)

= ||w − p|| − 2

3
ξ(p)

= ||w −H∗(P (p))− (p−H∗(P (p)))|| − 2

3
ξ(p)

≥
∣∣||w −H∗(P (p))|| − ||p−H∗(P (p)))||∣∣− 2

3
ξ(p)

=
∣∣α− ||p−H∗(P (p)))||∣∣− 2

3
ξ(p)

= α− ||p−H∗(P (p)))|| − 2

3
ξ(p)

> α− 1

6
ξ(p)− 2

3
ξ(p) = 0

But then, we know that φ∗(H∗(P (p))) < 0 by our choice of U ′ and δ, and hence there is a
point on the line segment from H∗(P (p)) to w such that φ∗ = 0 since φ∗ is continuous.

Now that we have shown the existence of such a point, we will prove that it is unique.
Consider now the Jacobian representation of ∇φ. In order to find ProjP (p)∇φ(q) for q ∈
P (p), we multiply on the left by the projection matrix onto P (p), giving us [ProjP (p)][∇φ][q].
Evaluating [ProjP (p)][∇φ] gives us ∇(φ|P (p)) as defined as a function in P (p). We then note

7



that H is constant within P (p). Therefore, we have

ProjP (p)∇φ(q) =
d

dq
||q − p||P (p)

=
q − p
||q − p||

∗ d

dq
(q − p)

=
q − p
||q − p||

= u(q)

where q is the portion of q that lies inside of P (p). Hence, ∇φ(w′) · u′ = u(w′) · u′ for any
vector u′ parallel to P (p).

Take any w′ on the line segment from H∗(P (p)) to w for which φ∗(w′) ≥ 0. Since
µ(P (p), q0) is on the unit sphere around H∗(P (p)) in the plane P (p), we know ||µ(P (p), q0)−
H∗(P (p))|| = 1,H ′(µ(P (p), q0)) = H∗(P (µ(P (p), q0))) = H∗(P (p)) = H ′(w′), and u′(µ(P (p), q0)) =
u′(w′). Then, using the same result about the projection of the gradient as above,

∂σ′

∂α
(w′) = ∇φ∗(w′) · µ(P (p), q0)−H∗(P (p))

||µ(P (p), q0)−H∗(P (p))||

= ∇φ∗(w′) · µ(P (p), q0)−H ′(w′)
||µ(P (p), q0)−H ′(w′)||

= ∇φ∗(w′) · u′(µ(P (p), q0))
= ∇φ∗(w′) · u′(w′)

This tells us that∣∣∣∣∂σ′∂α
(w′)

∣∣∣∣ = |∇φ∗(w′) · u′(w′)|
= |(∇φ∗(w′)−∇φ(w′)) · u′(w′) +∇φ(w′) · u′(w′)|
= |(∇φ∗(w′)−∇φ(w′)) · u′(w′) + u(w′) · u′(w′)|
= |(∇φ∗(w′)−∇φ(w′)) · u′(w′) + u(w′) · (u′(w′)− u(w′)) + u(w′) · u(w′)|
= |(∇φ∗(w′)−∇φ(w′)) · u′(w′) + u(w′) · (u′(w′)− u(w′)) + 1|
= |(∇φ′(w′)−∇φ(w′)−∇ω(w′)) · u′(w′) + u(w′) · (u′(w′)− u(w′)) + 1|
= |(∇φ′(w′)−∇φ(w′)) · u′(w′)−∇ω(w′) · u′(w′) + (u′(w′)− u(w′)) · u(w′) + 1|
≥ −|(∇φ′(w′)−∇φ(w′)) · u′(w′)| − |∇ω(w′) · u′(w′)| − |(u′(w′)− u(w′)) · u(w′)|+ 1

≥ −|∇φ′(w′)−∇φ(w′)| − |∇ω(w′)| − |u′(w′)− u(w′)|+ 1

>
−1
3
− 1

3
− 1

3
+ 1 = 0

since |u(q)| = |u′(q)| = 1, ||u′(q)− u(q)|| < 1
3
, ||∇φ′(q)−∇φ(q)|| < 1

3
, and ||∇ω(q)|| < 1

3
for

all q ∈ R(U ′). �

By our previous logic, we have proved that ρ is analytic.
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We now take any q ∈ R(U ′) and Q(q) such that ||Q(q) − P (q)|| < γ. Since Q(q) is
fixed, σ(Q(q), q0, ρ(Q(q), q0)) is a function of q0 that maps S(P (p0)) into the intersection of
the zero set of φ∗ and Q(q), which we will call S∗(Q(q)). As we have proven, this is the
boundary of an analytic neighborhood of H∗(Q(q)). Since σ is analytic, and in particular
analytic in Q(q), S∗(Q(q)) varies analytically with our choice of Q(q). Since our manifold
M is second-countable, the open cover of

⋃
p∈M U ′p where U ′p is the neighborhood U ′ where

p0 = p has a countable subcover with a locally finite refinement. Each of these sets has an
associated γp that allows for a function ρ in that neighborhood. We then let γ : R(M)→ R+

be a continuous function satisfying γ(q) = γ(H(q)) is less than each γp associated with each
neighborhood U ′ that contains H(q). Now if q is any point of R(M) and P ∗ is a function
(that defines planes that fill out a neighborhood of M in a one to one way in the same way
as P ) containing q and satisfying

||P ∗(q)− P (q)|| < γ(q) (10)

R(M) intersects S in sets S∗(q, P ∗(q)) diffeomorphic to a sphere which varies analytically
with q and P ∗.

4.3. The Analytic Manifold M∗. For any q ∈ R(M) and plane Q(q) satisfying (10), let
Q∗(q,Q(q)) be the interior of S∗(q,Q(q)). We then define g(q,Q(q)) to be the center of mass
of Q∗(q,Q(q)). We now look to show that the collection M∗ of all points q = g(q, P ∗(q))
where P ∗ is a sufficiently close analytic approximation of P (satisfying (10)) in R(M) is
an analytic manifold embedded in R(M) that is Cr-homeomorphic with M , completing the
proof.

First, we must show that g is analytic. For any q ∈ R(M) and Q(q) satisfying (10), q lies
in some U ′ from the open cover described above. We then associate with it some p0 ∈M of
which U ′ is a neighborhood. If V (q,Q(q)) is the (n−m)-volume of Q∗(q,Q(q)) with volume
element |dq|, then we can express g as

g(q,Q(q)) =
1

V (q,Q(q))

∫
Q∗(q,Q(q))

q|dq|

=

∫
Q∗(q,Q(q))

q|dq|∫
Q∗(q,Q(q))

1|dq|

=

∫
S(P (p0))

∫ ρ(q′,Q(q))

0
αn−m−1(H∗(Q(q)) + α(µ(Q(q), q′)−H∗(Q(q))))dα|dq′|∫

S(P (p0))

∫ ρ(q′,Q(q))

0
αn−m−1dα|dq′|

=

∫
S(P (p0))

∫ ρ(q′,Q(q))

0
αn−m−1(H∗(Q(q)) + α(µ(Q(q), q′)−H∗(Q(q))))dα|dq′|∫

S(P (p0))
ρ(q′,Q(q))n−m

n−m |dq′|

Since ρ is positive everywhere, we know that
∫
S(P (p0))

ρ(q′,Q(q))n−m

n−m |dq′| is never zero. Therefore,
we can note that g is a ratio of compositions of analytic functions and hence is analytic.

We now aim to characterize our analytic manifold. Fix U ′ and p0 ∈ M associated with
some neighborhood U ′. We then define τ : R(U ′)× Y → P (p0) by
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τ(q,Q) = T−1H∗(Q(q)),Q(q)(q)− T
−1
H∗(Q(q)),Q(q)(g(q,Q(q)))

We then subsequently define τ ′(q) = τ(q, P (q)) and τ ∗(q) = τ(q, P ∗(q)) where P ∗ ana-
lytically approximates P within γ through the first order. Since P (p0) ∼= Rn, τ ′ is then
a smooth map that maps each P (q) diffeomorphically onto Rn−m. Similarly, τ ∗ is an an-
alytic map of each P ∗(q) analytically-diffeomorphically onto Rn−m. We then let M∗

U ′ be
the set of all q ∈ R(U ′) such that τ ∗(q) = 0 (equivalently, this is the image of 0 under
(τ ∗)−1). Fix q ∈ R(U ′). We then let v1, . . . , vn−m be orthogonal vectors spanning P ∗(q) and
vn−m+1, . . . , vn be vectors orthogonal to each other and to v1, . . . , vn−m (These can be found
in a process similar to section 4.2.1). By the Analytic Implicit Function Theorem, letting qm
be the last m coordinates of q in the coordinate system induced by v1, . . . , vn, we can find
an open set A ⊂ Rm around each qm where we have a function b : A→ B ∼= Rn−m where B
is the tangent space to M such that τ ∗(b(qm), qm) = 0 for all qm ∈ A. qm → (b(qm), qm) is
then a chart, and hence this level set is an analytic submanifold of R(U ′). Also, the kernel
of Dτ ∗(q) at any q ∈M∗

U ′ is precisely the tangent space to M∗
U ′ at q; this is complementary

to P ∗(q), and since P ∗ is a close approximation to P through the first order, this is also
complimentary to P (q).

We now apply this to each U ′ covering M and find a collection of analytic manifolds M∗
U ′ .

Since the center of mass g is dependant on q,Q(q) and not U ′, the union of these manifolds
M∗ is an analytic manifold that is locally equal to eachM∗

U ′ . We then restrict the projection
H to M∗ to define a smooth map M∗ → M that is one to one and whose derivative sends
each tangent space at q ∈M∗ onto the tangent space at H(q) ∈M . By the Inverse Function
Theorem, this is a Cr-diffeomorphism.
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